AI-Powered Segmentation Of Bifid Mandibular Canals Using CBCT
Abstract
Objective: Accurate segmentation of the mandibular and bifid canals is crucial in dental implant planning to ensure safe implant placement, third molar extractions and other surgical interventions. The objective of this study is to develop and validate an innovative artificial intelligence tool for the efficient, and accurate segmentation of the mandibular and bifid canals on CBCT.
Materials and methods: CBCT data were screened to identify patients with clearly visible bifid canal variations, and their DICOM files were extracted. These DICOM files were then imported into the 3D Slicer® open-source software, where bifid canals and mandibular canals were annotated. The annotated data, along with the raw DICOM files, were processed using the nnU-Netv2 training model by CranioCatch AI software team.
Results: 69 anonymized CBCT volumes in DICOM format were converted to NIfTI file format. The method, utilizing nnU-Net v2, accurately predicted the voxels associated with the mandibular canal, achieving an intersection of over 50% in nearly all samples. The accuracy, Dice score, precision, and recall scores for the mandibular canal/bifid canal were determined to be 0.99/0.99, 0.82/0.46, 0.85/0.70, and 0.80/0.42, respectively.
Conclusions: Despite the bifid canal segmentation not meeting the expected level of success, the findings indicate that the proposed method shows promising and has the potential to be utilized as a supplementary tool for mandibular canal segmentation. Due to the significance of accurately evaluating the mandibular canal before surgery, the use of artificial intelligence could assist in reducing the burden on practitioners by automating the complicated and time-consuming process of tracing and segmenting this structure.
Clinical relevance: Being able to distinguish bifid channels with artificial intelligence will help prevent neurovascular problems that may occur before or after surgery.
I Want to Write a Scientific Research Project
CranioCatch is a global leader in dental medical technology that improves oral care in the field of dentistry. With AI-supported clinical, educational, and labeling solutions, we provide significant improvements in the diagnosis and treatment of dental diseases using contemporary approaches in advanced machine learning technology.
CranioCatch serves thousands of patients with dental health issues worldwide every day with its innovative technologies. That’s why we eagerly look forward to meeting our valued dentists who wish to work in the field of 'Scientific Research in Dentistry'.



Contact Us

